Melting curve analysis of SNPs (McSNP): a gel-free and inexpensive approach for SNP genotyping.
نویسندگان
چکیده
High-throughput methods for assaying DNA variation require two important steps: (i) discriminating the variation and (ii) detecting the signal. In this report, we describe a novel SNP genotyping method that we refer to as melting curve analysis of SNPs (McSNP). McSNP combines a classic approach for discriminating alleles, restriction enzyme digestion, with a more recent method for detecting DNA fragments, melting curve analysis. Melting curve analysis is performed by slowly heating DNA fragments in the presence of the dsDNA-specific fluorescent dye SYBR Green I. As the sample is heated, fluorescence rapidly decreases when the melting temperature of a particular fragment is reached. We show that it is possible to determine the composition of simple mixtures of DNA fragments, such as those that result from restriction enzyme digestions of short PCR products. McSNP is well suited for high-throughput genotyping because 96 samples can be analyzed and automatically scored in 20 min. Our results clearly demonstrate that McSNP is a simple, inexpensive, and accurate means of genotyping SNP variation.
منابع مشابه
Genotyping common SNP and a microsatellite sequence closely linked to waxy gene in rice by DNA based markers
The potential of different DNA based molecular markers was examined for the detection of single nucleotide polymorphism (SNP) in the waxy gene and a microsatellite (SSR) sequence closely linked to it in a collection of rice varieties. DNA was extracted from leaf samples of 68 different rice cultivars by the CTAB method and specific primers were designed for the amplification of waxy gene and SS...
متن کاملApplication of High-Resolution DNA Melting for Genotyping in Lepidopteran Non-Model Species: Ostrinia furnacalis (Crambidae)
Development of an ideal marker system facilitates a better understanding of the genetic diversity in lepidopteran non-model organisms, which have abundant species, but relatively limited genomic resources. Single nucleotide polymorphisms (SNPs) discovered within single-copy genes have proved to be desired markers, but SNP genotyping by current techniques remain laborious and expensive. High res...
متن کاملGenotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons.
BACKGROUND High-resolution melting of PCR amplicons with the DNA dye LCGreen I was recently introduced as a homogeneous, closed-tube method of genotyping that does not require probes or real-time PCR. We adapted this system to genotype single-nucleotide polymorphisms (SNPs) after rapid-cycle PCR (12 min) of small amplicons (</=50 bp). METHODS Engineered plasmids were used to study all possibl...
متن کاملHigh-throughput SNP Genotyping by Melting Curve Analysis for Resistance to Southern Root-knot Nematode and Frogeye Leaf Spot in Soybean
Melting curve analysis of fluorescently labeled DNA fragments is used extensively for genotyping single nucleotide polymorphism (SNP). Here, we evaluated a SNP genotyping method by melting curve analysis with the two probe chemistries in a 384-well plate format on a Roche LightCycler 480. The HybProbe chemistry is based on the fluorescence resonance energy transfer (FRET) and the SimpleProbe ch...
متن کاملHigh-Resolution Melting Genotyping of Enterococcus faecium Based on Multilocus Sequence Typing Derived Single Nucleotide Polymorphisms
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioTechniques
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2001